Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.990
Filtrar
1.
Vet World ; 17(2): 421-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595651

RESUMO

Background and Aim: Doxorubicin (DOX) is often used as a chemotherapeutic agent, although it may damage testicular functions. This study was designed to investigate the protective effects of propolis on testicular histological changes, semen parameters, and testosterone concentrations as a means of protecting against testicular damage caused by DOX chemotherapy. Materials and Methods: Forty-eight male Wistar rats were divided into four groups with 12 animals per group. The first group served as the control. Rats in the second group were administered 4 mg/kg DOX. The third group was administered 4 mg/kg of DOX and 30 mg/kg b.w. propolis. The fourth group was orally dosed daily with 30 mg/kg b.w. propolis. Results: DOX treatment resulted in a significantly decreased weight gain (WG) rate compared with the control, whereas DOX + propolis resulted in improved WG and returned to the normal range. Testosterone levels were comparable among the experimental groups, with a significant increase in the propolis-treated group. In addition, DOX-treated groups exhibited a remarkable depletion in sperm counts, motility, and viability compared to the other groups. Conclusion: Most of the histological and hormonal changes resulting from the toxicity of DOX returned to almost normal after treatment of rats with the aqueous extract of propolis, indicating that propolis ameliorated the effects of DOX poisoning on testicular function in male rats.

2.
BMC Complement Med Ther ; 24(1): 165, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641781

RESUMO

In this study we develop novel type of antibacterial chitosan-propolis NPs to improve theantimicrobial activity against various pathogens. To this aim, we primarily extracted propolis with methylal and ethanol as green solvents and its encapsulation with chitosan NPs. The developed propolis loaded chitosan NPs indicated antimicrobial and anti-biofilm properties against various gram positive and negative. FTIR revealed the successful encapsulation of the propolis extract with Ethanol (PE) and Methylal (PM) into the chitosan nano career matrix. HPLC and GC-MASS also confirmed the presence of flavonoids and phenols compounds of propolis extracted with both solvents. In addition, we confirmed the total phenolic and flavonoid compounds in propolis by calorimetric method of Folin-Ciocalteu and aluminum trichloride complex formation assays, respectively. PE-CH and PM-CH were optimized regarding physicochemical properties such as particle size, zeta potential, and poly dispersity index (PDI) index. DLS and SEM micrographs confirmed a spherical morphology in a range of 360-420 nm with Z potential values of 30-48 mV and PDI of 0.105-0.166 for PE-CH and PM-CH, respectively. The encapsulation efficiency was evaluated using colorimetric analysis, with median values ranging from 90 to 92%. The MIC values within the range of 2 to 230 µg/ml and MBC values between 3 to 346 µg/ml against both gram-positive and negative bacteria. While both PE and PM showed a significant reduction in the number of E. coli, S. aureus, and S. epidermidis, the use of PE-CH and PM-CH led to a statistically significant and greater reduction in number of E. coli, S. aureus, and S. epidermidis strains on the biofilm, pre-formed biofilm and planktonic phases. Besides, the DPPH assay showed significant antioxidant activity for these NPs within the range of 36 to 92%. MTT assay for MHFB-1, HFF, L929, MDF, and MCF-7 cells exhibited statistically significant differences in each other that show the IC50 between 60-160 µg/ml for normal cells and 20 for cancer cells. Finally the present study indicated that both PM and PM-CH greater than PE and PE-CH in which contain high flavonoid and phenolic contents with a high antioxidation potential antioxidant properties, which could be beneficial for cell proliferation and antibiotic and anticancer applications.


Assuntos
Quitosana , Éteres Metílicos , Nanopartículas , Própole , Própole/farmacologia , Quitosana/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Solventes , Etanol , Nanopartículas/química , Flavonoides
3.
Mol Biol Rep ; 51(1): 559, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643306

RESUMO

BACKGROUND: Methylprednisolone (MP) is a pharmaceutical agent employed in the management of Leukemia, which is a systemic malignancy that arises from abnormalities in the hematological system. Numerous investigations in the field of cancer research have directed their attention towards propolis, a natural substance with significant potential as a treatment-supportive agent. Its utilization aims to mitigate the potential adverse effects associated with chemotherapy medications. The objective of this study was to examine the impact of olive oil-based propolis (OEP) and caffeic acid phenethyl ester (CAPE) on the treatment of acute myeloid leukemia, as well as to determine if they exhibit a synergistic effect when combined with the therapeutic support product methylprednisolone. METHODS AND RESULTS: The proliferation of HL-60 cells was quantified using the WST-8 kit. The PI Staining technique was employed to do cell cycle analysis of DNA in cells subjected to OEP, CAPE, and MP, with subsequent measurement by flow cytometry. The apoptotic status of cells was determined by analyzing them using flow cytometry after staining with the Annexin V-APC kit. The quantification of apoptotic gene expression levels was conducted in HL-60 cells. In HL-60 cells, the IC50 dosages of CAPE and MP were determined to be 1 × 10- 6 M and 5 × 10- 4 M, respectively. The HL-60 cells were subjected to apoptosis and halted in the G0/G1 and G2/M phases of the cell cycle after being treated with MP, CAPE, and OEP. CONCLUSIONS: Propolis and its constituents have the potential to serve as effective adjunctive therapies in chemotherapy.


Assuntos
Ácidos Cafeicos , Leucemia Mieloide Aguda , Álcool Feniletílico/análogos & derivados , Própole , Humanos , Própole/farmacologia , Azeite de Oliva , Metilprednisolona/farmacologia , Apoptose
4.
Nat Prod Res ; : 1-4, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646829

RESUMO

Propolis is a beehive product produced from honeybees by mixing ß-glycosidase enzyme and beeswax with exudate collected from plant resins. The main goal of this study was to investigate the phytochemical potential and GC-MS profiling of the main constituents of propolis. The antioxidant activity was assessed by using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, total phenolic content and total flavonoid content were analysed by Folin-Ciocalteu reagent method and aluminium chloride method respectively. Methanolic extract exhibited highest antioxidant activities, ethanolic extract had the highest total phenolic content, and maximum amount of flavonoid was observed in the chloroform extract. GC-MS analysis revealed the presence of flavonoids, fatty acids and phenolic compounds. Results revealed that propolis from Derra Bassi can be used as natural antioxidant, also extracting solvents had a significant impact on the phytochemical activities and with its standardisation can be used for prevention of diseases related with free radicals.

5.
Korean J Pain ; 37(2): 141-150, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557655

RESUMO

Background: : Stingless bee propolis is a popular traditional folk medicine and has been employed since ancient times. This study aimed to evaluate the antinociceptive activities of the chemical constituents of aqueous propolis extract (APE) collected by Trigona thoracica in a nociceptive model in mice. Methods: : The identification of chemical constituents of APE was performed using high-performance liquid chromatography (HPLC). Ninety-six male Swiss mice were administered APE (400 mg/kg, 1,000 mg/kg, and 2,000 mg/kg) before developing nociceptive pain models. Then, the antinociceptive properties of each APE dose were evaluated in acetic acid-induced abdominal constriction, hot plate test, and formalin-induced paw licking test. Administration of normal saline, acetylsalicylic acid (ASA, 100 mg/kg, orally), and morphine (5 mg/kg, intraperitoneally) were used for the experiments. Results: : HPLC revealed that the APE from Trigona thoracica contained p-coumaric acid (R2 = 0.999) and caffeic acid (R2 = 0.998). Although all APE dosages showed inhibition of acetic acid-induced abdominal constriction, only 2,000 mg/kg was comparable to the result of ASA (68.7% vs. 73.3%, respectively). In the hot plate test, only 2,000 mg/kg of APE increased the latency time significantly compared to the control. In the formalin test, the durations of paw licking were significantly reduced at early and late phases in all APE groups with a decrease from 45.1% to 53.3%. Conclusions: : APE from Trigona thoracica, containing p-coumaric acid and caffeic acid, exhibited antinociceptive effects, which supports its potential use in targeting the prevention or reversal of central and peripheral sensitization that may produce clinical pain conditions.

6.
Iran Endod J ; 19(2): 99-104, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577007

RESUMO

Introduction: This study explored the effects of propolis extract calcium hydroxide (Ca(OH)2) combination on malondialdehyde and superoxide dismutase expression in dental pulp, aiming to assess its potential as a direct pulp capping material. Materials and Methods: Thirty male Wistar rats were randomly assigned to three groups. Mandibular molar teeth were prepared using a low-speed round bur. In Group I, no material was applied; in Group II, teeth were treated with Ca(OH)2; and in Group III, teeth were treated with Propolis extract-Ca(OH)2, followed by Cention N filling. Immunohistochemistry was conducted on pulp tissue samples obtained on the third and seventh days post-treatment to assess malondialdehyde and superoxide dismutase expression. Statistical analyses included the Shapiro-Wilk test, Levene test, ANOVA, and Tukey's HSD. Results: The samples treated with propolis extract-Ca(OH)2 combination exhibited significantly lower malondialdehyde expression on both days compared to samples treated with Ca(OH)2 (P<0.05), indicating reduced oxidative stress. Superoxide dismutase expression in the propolis extract-Ca(OH)2 group was higher (P<0.05), suggesting an enhanced antioxidant activity. The control group showed intermediate results. Statistical analyses confirmed significant differences between groups for both malondialdehyde and superoxide dismutase expressions (P<0.05). Conclusion: The study suggests that the propolis extract-Ca(OH)2 combination holds promise for direct pulp capping applications by minimizing oxidative stress and promoting antioxidant defense mechanisms in dental pulp.

7.
BMC Complement Med Ther ; 24(1): 154, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582863

RESUMO

BACKGROUND: To assess and compare the effectiveness of propolis mouthwash with chlorhexidine mouthwash in the reduction of plaque and gingivitis. METHODS: A single centre, latin-square cross-over, double masked, randomized controlled clinical trial was conducted on 45 chronic generalized gingivitis subjects who were chosen from the dental clinic of MAHSA University, Malaysia. A total of 45 subjects were randomly assigned into one of the three different groups (n = 15 each) using a computer-generated random allocation sequence: Group A Propolis mouthwash; Group B Chlorhexidine mouthwash; and Group C Placebo mouthwash. Supragingival plaque and gingival inflammation were assessed by full mouth Plaque index (PI) and gingival index (GI) at baseline and after 21 days. The study was divided into three phases, each phase lasted for 21 days separated by a washout period of 15 days in between them. Groups A, B and C were treated with 0.2% Propolis, Chlorhexidine, and Placebo mouthwash, respectively, in phase I. The study subjects were instructed to use the assigned mouthwash twice daily for 1 min for 21 days. On day 22nd, the subjects were recalled for measurement of PI and GI. After phase I, mouthwash was crossed over as dictated by the Latin square design in phase II and III. RESULTS: At baseline, intergroup comparison revealed no statistically significant difference between Groups A, B and C (p > 0.05). On day 21, one-way ANOVA revealed statistically significant difference between the three groups for PI (p < 0.001) and GI (p < 0.001). Bonferroni post-hoc test showed statistically significant difference between Propolis and Chlorhexidine mouthwash (P < 0.001), with higher reduction in the mean plaque and gingival scores in propolis group compared to chlorhexidine and placebo groups. CONCLUSIONS: Propolis mouthwash demonstrated significant improvement in gingival health and plaque reduction. Thus, it could be used as an effective herbal mouthwash alternative to chlorhexidine mouthwash. TRIAL REGISTRATION: The trial was retrospectively registered on 25/07/2019 at clinicaltrials.gov and its identifier is NCT04032548.


Assuntos
Gengivite , Própole , Humanos , Clorexidina/uso terapêutico , Antissépticos Bucais/uso terapêutico , Própole/uso terapêutico , Gengivite/tratamento farmacológico , Extratos Vegetais/uso terapêutico
8.
Molecules ; 29(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38611922

RESUMO

Propolis extracts have been widely studied due to their popularity in traditional medicine, presenting incredible biodiversity. This study aimed to analyze propolis extracts' phytochemical, physicochemical, and biological activities from four different biogeographic zones of the Huila region (Colombia). The raw material samples were collected by the scraping method and the ethanolic extracts (EEPs) were obtained by cold maceration with ethanol (96%). The physicochemical and sensory characterization was carried out according to the protocols recommended by the Brazilian Ministry of Agriculture and the main components of the EEPs were identified by LC-HRMS analysis. The determination of total phenols and flavonoids was carried out using colorimetric techniques. The antioxidant activity, cytotoxicity, and cell cycle regulation analyses in L929 and HGnF cells were evaluated using DPPH, Alamar Blue, and 7-amino actinomycin D (7-AAD) assays. The propolis samples presented an average yield of 33.1%, humidity between 1.6 and 2.8%, melting point between 54 and 62 °C, ashes between 1.40 and 2.19%, and waxes of 6.6-17.9%, respectively. The sensory characteristics of all samples were heterogeneous, complying with the quality specifications established by international standards. The polyphenolic and total flavonoid content was representative in the samples from Quebradon (255.9 ± 9.2 mg GAE/g, 543.1 ± 8.4 mg QE/g) and Arcadia (543.1 ± 8.4 mg GAE/g, 32.5 ± 1.18 g QE/g) (p < 0.05) that correlated with high antioxidant activity (Quebradon: 37.2 ± 1.2 µmol/g, Arcadia: 38.19 ± 0.7 µmol/g). In the chemical composition analysis, 19 compounds were characterized as phenolic acids and flavonoids, the most representative being chrysoeriol-O-methyl-ether, ellagic acid, and 3,4-O-dimethylcaffeic acid. Regarding biological activity, Quebradon and Arcadia propolis presented low toxicity with IC50 of 2.83 ± 2.3 mg/mL and 4.28 ± 1.4 mg/mL in HGnF cells, respectively, and an arrest of the cell cycle in the G2/M phase of 71.6% and 50.8% compared to the control (11.9%) (p < 0.05). In general, the results of this study contribute to the identification of valid quality criteria to evaluate Colombian propolis, contributing to its study and chemical and biological characterization as a source of raw material for industrial and pharmaceutical use. In addition, Quebradon and Arcadia propolis can be important sources of bioactive molecules for the development of new drugs.


Assuntos
Ascomicetos , Própole , Antioxidantes/farmacologia , Colômbia , Própole/farmacologia , Ciclo Celular , Etanol , Flavonoides/farmacologia
9.
Food Sci Nutr ; 12(4): 2772-2782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628175

RESUMO

Propolis, a natural product collected by honeybees from various plant sources, has gained significant attention due to its diverse bioactive compounds and potential therapeutic properties. To further explore its contents and biological activities, this study aimed to analyze the phenolic compounds in Siirt propolis extracts obtained using different solvents, namely ethanol, water, and ethanol-water mixtures. The primary objective of this research was to investigate the phenolic profile, as well as the antidiabetic and antioxidant activities of the propolis extracts. Chemical profiling of extracts was performed using LC-MS/MS. The antioxidant potential of the propolis extracts was evaluated through free radical scavenging methods, including DPPH and ABTS assays. As a result of these analyses, propolis extracts showed moderate radical scavenging potential with 13.86%-35.72% for DPPH and 33.62%-62.50% for ABTS at a concentration of 30 µg mL-1, respectively. This radical scavenging potential of the extracts sheds light on its ability to combat oxidative stress, which is implicated in the development of diabetes, and its potential effects on cellular health. Additionally, the study assessed the antidiabetic properties of the propolis extracts by examining their inhibition effects on α-amylase and α-glycosidase enzymes. Extracts with high phenolic content showed a high inhibitory effect against α-glucosidase with an IC50 of 5.72 ± 0.83 µg mL-1. This research provided significant findings regarding the potential use of propolis in the treatment of diabetes and related metabolic disorders.

10.
Eur J Pharm Sci ; 196: 106762, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614153

RESUMO

Propolis has a long ethnopharmacological history for oral periodontal diseases treatment. Propolis flavonoids are main active components for anti-inflammation and tissue protection. However, the intractable dissolution properties of propolis flavonoids and complex oral environment pose great challenges for periodontal delivery. In addition, the therapeutic mechanism as well as the therapeutic correlation of inflammation resolution and tissue regeneration remain unclear for propolis flavonoids. In this study, we constructed an in situ thermosensitive depot systems using total flavonoids from propolis-loaded cubic liquid crystals (TFP-CLC) hydrogel for periodontal delivery. TFP-CLC inhibited inflammatory cell infiltration, reactive oxygen species and the expression of inflammatory cytokines of NF-κB and IL-1ß. In addition, alveolar bone and collagen were significantly regenerated after TFP-CLC administration according to micro-CT and immunohistochemistry. Mechanism studies suggested that TFP-CLC alleviated inflammation and promoted alveolar bone repair via regulating TLR4/MyD88/NF-κB p65 and RANK/NF-κB signaling pathways, respectively. Correlation analysis further confirmed that the inflammatory resolution produced by TFP-CLC could accelerate periodontal tissue regeneration. In summary, TFP-CLC is a promising multifunctional in situ thermo-sensitive hydrogel depots for periodontitis treatment.

11.
Int J Biol Macromol ; 267(Pt 1): 131452, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593895

RESUMO

Nanofibers hold significant promise for wound healing applications, but their potential is limited by their large diameter. To overcome this limitation, the development of nanofibrous systems with refined nanonets (approximately 20 nm in diameter) represents a notable improvement. In this study, a composite of polycaprolactone/collagen (PCLC) nano-fiber/nets (NFNs) was fabricated using benign solvents (acetic acid and formic acid) via the electro-spinning/netting (ESN) technique, harnessing the regenerative potential of collagen as a biological macromolecule. Additionally, to enhance the natural attributes of the NFNs structure, Propolis extract, renowned for its wound healing properties, was incorporated. Five ESN solutions were prepared: PCL, PCLC, PCLC/Pro 5 %, PCLC/Pro 10 %, and PCLC/Pro 15 %. NaCl salt was introduced into all ESN solutions to improve nanonets formation. FE-SEM imaging demonstrated successful nano-net formation in all ESN solutions except for the PCL formulation. The fabricated scaffolds exhibited spider-like nanonets with the addition of collagen and further enhanced nano-net formation with Propolis incorporation. Trunk nanofibers showed filamentous structures without any beads, with an average diameter of 164-728 nm, while the diameter of branched fibers (nanonets) was approximately 20 nm. WVTR values of the NFNs were comparable to commercial dressings such as Tegaderm. The results also demonstrated the potent cytoprotective effects of Propolis-loaded NFNs in a dose-dependent manner. Furthermore, the viability of HFF-2 cells after 72 h of culture on PCLC NFNs significantly increased compared to PCL nanofibers. The highest cell viability was observed in PCLC/Pro 15 % nanofibers after 24, 48, and 72 h of cell culture, indicating the proliferative effect of Propolis extract in nanoformulated form. Additionally, the scaffolds exhibited a hemocompatibility of <3 %, further highlighting their potential in wound healing therapeutics.

12.
Neurobiol Aging ; 139: 20-29, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38583392

RESUMO

Brazilian green propolis (propolis) is a chemically complex resinous substance that is a potentially viable therapeutic agent for Alzheimer's disease. Herein, propolis induced a transient increase in intracellular Ca2+ concentration ([Ca2+]i) in Neuro-2A cells; moreover, propolis-induced [Ca2+]i elevations were suppressed prior to 24-h pretreatment with amyloid-ß. To reveal the effect of [Ca2+]i elevation on impaired cognition, we performed memory-related behavioral tasks in APP-KI mice relative to WT mice at 4 and 12 months of age. Propolis, at 300-1000 mg/kg/d for 8 wk, significantly ameliorated cognitive deficits in APP-KI mice at 4 months, but not at 12 months of age. Consistent with behavioral observations, injured hippocampal long-term potentiation was markedly ameliorated in APP-KI mice at 4 months of age following repeated propolis administration. In addition, repeated administration of propolis significantly activated intracellular calcium signaling pathway in the CA1 region of APP-KI mice. These results suggest a preventive effect of propolis on cognitive decline through the activation of intracellular calcium signaling pathways in CA1 region of AD mice model.

13.
Chem Biodivers ; : e202400433, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584139

RESUMO

This study aims to identification of phytochemical profile of Apis mellifera propolis and explore potential of its anti-diabetic activity through inhibition on α-amylase (α-AE), α-glucosidase(α-GE) and finally identified the novel antidiabetic compounds from propolis. Apis mellifera propolis extract (AMPE) exhibited elevated polyphenol 33.26 ± 0.17 (mg GAE/g) and flavonoid (15.45 ± 0.13 mg RE/g), while its also indicated moderate strong antioxidant activity (EC50 793.09 ±1.94 µg/ml). This study found that AMPE displayed promising α-AE and α-GE inhibition through in vitro study. Based on LC-MS/MS screening, 18 unique AMPE compounds were identified, majorly belonging to anthraquinone and flavonoid compounds. In silico study determined that 8 compounds of AMPE compounds exhibited strong binding to α-AE, interacting to catalytic residue of ASP197. Moreover, 2 compounds exhibit potential inhibition of α-AG, by interacting to crucial amino acids of ARG315, ASP352, and ASP69. Finally, we suggested 2,7-Dihydroxy-1-(p-hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene and 3(3-(3,4-Dihydroxybenzyl)-7-hydroxychroman-4-one as novel inhibitors of α-AE and α-GE. Notably, these compounds were initially discovered in Apis mellifera propolis, and molecular dynamic analysis confirmed their stable binding with both enzymes over 100 ns simulations. In vivo acute toxicity test reveals AMPE as a practically non-toxic product with LD50 value of 16050mg/kg.

14.
Heliyon ; 10(7): e28621, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586359

RESUMO

Natural deep eutectic solvents (NADESs) have been considered promising to replace traditional volatile and toxic organic solvents for the extraction of biologically active substances from natural sources. This work applied an efficient and ethanol-exclusion strategy for extraction of phenolic compounds from poplar type propolis using five known NADESs (lactic acid:1,2-propanediol 1:1, lactic acid:fructose 5:1, choline chloride:1,2-propanediol 1:3, choline chloride:1,2-propanediol:water 1:1:1 and betaine:malic acid:water 1:1:6). The selected NADESs' extractability was evaluated by measuring the concentrations of total phenolics and total flavones and flavonols in the propolis extracts obtained, which qualitative chemical composition was further determined in detail by gas chromatography-mass spectrometry (GC-MS) analysis. It demonstrated that the chemical profiles of NADES and 70% ethanolic propolis extracts are similar. To expand the knowledge about the role of the applied solvents in the poplar propolis extraction process, the in vitro antimicrobial, cytotoxic and genotoxic activity of both NADESs and liquid NADES extracts were evaluated. The results revealed that the use of the selected NADESs as an extraction media for phenolic compounds from poplar propolis not only delivered a good extraction yield in some cases, but generally led to the preservation of propolis extracts' biological activity and even to the enhancement of their antimicrobial effect in comparison with the hydroethanolic one. Besides, the tested NADESs except for lactic acid:fructose and betaine:malic acid:water exerted low to negligible toxicity against normal cells treated and apart from lactic acid:fructose the remaining solvents demonstrated concentration-dependent moderate to subtle genotoxicity. There is a probability that not the supramolecular structure of the NADESs, but their components, played a key role for the observed biological effects. The present study has demonstrated an alternative approach for extracting the biologically active complex from poplar type propolis using NADESs, which could be useful for further pharmaceutical and cosmeceutical applications.

15.
Rocz Panstw Zakl Hig ; 75(1): 75-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587107

RESUMO

Background: Despite the extensive literature focused on propolis extract, few data exists on the bioactive compounds and biological activities in the Moroccan propolis and its economic value is low. Objective: In this research, the aim was to evaluate the total content of phenols and flavonoids as well as the antioxidant, antibacterial and antifungal activities of Moroccan propolis. Material and Methods: The polyphenol and flavonoid content of the Moroccan propolis from three geographic regions, was quantified in the ethanolic extract by colorimetric methods using folin-ciocalteu and aluminum chloride. The antioxidant activity was evaluated by the DPPH test and expressed as IC50. Disk diffusion and broth microdilution methods were used to examine in vitro antimicrobial activity against known human microorganism pathogens. Results: The obtained data revealed that Moroccan propolis samples presented significant variations in total polyphenols and flavonoids. All samples showed significant antioxidant activity with IC50 values ranging from 4.23±0.5 to 154±0.21 µg/ mL. A strong correlation between total phenolic activity, flavonoids and antioxidant activity was found. The in vitro study of antibacterial activity showed that the propolis samples exhibited a range of growth inhibitory actions against all bacterial strains tested with the highest activity against gram-positive bacteria. Only propolis from the Sidi Bennour region demonstrated an antifungal activity. Conclusion: The study data show that Moroccan propolis extracts have a promising content of antioxidant and antimicrobial compounds that could be exploited to prevent certain diseases linked to oxidative stress and pathogenic infections.


Assuntos
Anti-Infecciosos , Própole , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Flavonoides/farmacologia , Própole/farmacologia , Própole/química , Antifúngicos/farmacologia , Fenóis/farmacologia , Polifenóis , Extratos Vegetais/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia
16.
Front Vet Sci ; 11: 1357947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496314

RESUMO

Toxoplasmosis continues to be a prevalent parasitic zoonosis with a global distribution. This disease is caused by an intracellular parasite known as Toxoplasma gondii, and the development of effective novel drug targets to combat it is imperative. There is limited information available on the potential advantages of wheat germ oil (WGO) and propolis, both individually and in combination, against the acute phase of toxoplasmosis. In this study, acute toxoplasmosis was induced in Swiss albino mice, followed by the treatment of infected animals with WGO and propolis, either separately or in combination. After 10 days of experimental infection and treatment, mice from all groups were sacrificed, and their brains, uteri, and kidneys were excised for histopathological assessment. Additionally, the average parasite load in the brain was determined through parasitological assessment, and quantification of the parasite was performed using Real-Time Polymerase Chain Reaction targeting gene amplification. Remarkably, the study found that treating infected animals with wheat germ oil and propolis significantly reduced the parasite load compared to the control group that was infected but not treated. Moreover, the group treated with a combination of wheat germ oil and propolis exhibited a markedly greater reduction in parasitic load compared to the other groups. Similarly, the combination treatment effectively restored the histopathological changes observed in the brain, uterus, and kidney, and the scoring of these reported lesions confirmed these findings. In summary, the present results reveal intriguing insights into the potential therapeutic benefits of wheat germ oil and propolis in the treatment of acute toxoplasmosis.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38515382

RESUMO

OBJECTIVE: Anti-tuberculosis drugs Rifampicin and Pyrazinamide combination in pregnancy can cause morphological, visceral and skeletal damage. Several studies showed that propolis improves pregnancy outcomes. This study aims to determine the fetal protective effect of propolis in BALB/c mice given the anti-tuberculosis drug combination Rifampicin and Pyrazinamide. METHODS: A total of 21 pregnant mice were randomly divided into three groups: the normal group (N) was given distilled water as a vehicle, the positive control group (RP) were given rifampicin 15 mg/kg BW, pyrazinamide 35 mg/kg BW and the treatment group (IP) were given rifampicin 15 mg/kg BB, pyrazinamide 35 mg/kg BW and propolis 400 mg/kg BW. The treatment was given during the period of organogenesis, from day 6 to day 15. Laparotomy was performed on the 18th day of pregnancy. Maternal and fetal body weight, fetal length, number of fetuses, and skeletal defects of fetuses were used as parameters to identify the teratogenic effect. All data were analyzed using the ANOVA. RESULTS: All groups significantly differed between maternal and fetal body weights (p<0.05). The administration of rifampicin-pyrazinamide and propolis during pregnancy did not significantly affect the number of fetuses (p>0.05). The administration of propolis protects the fetus from skeletal abnormalities. While in the RP and IP groups, we can find resorption sites and haemorrhagic. CONCLUSIONS: This study may suggest the protective effects of propolis against Rifampicin Pyrazinamide-induced impaired pregnancy.

18.
Gels ; 10(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534579

RESUMO

In situ poloxamer-based gels are increasingly being explored as ocular drug delivery carriers to extend the release of active substances, thereby enhancing bioavailability. The objective of this study was to develop thermally stable in situ gels incorporating balsam poplar bud extract, propolis extract, and p-coumaric acid solution and to evaluate the physicochemical parameters of these gelified eye drops. This research assessed the compatibility of poloxamer-based eye drops with active components, their physicochemical properties, stability post-sterilization and during storage, and the release profiles of the active compounds. Fifteen eye drop formulations were prepared and categorized into three groups based on active components. One of the active components was propolis extract. As an alternative to propolis, eye drops containing the plant precursor, balsam poplar bud extract, were developed. The third group's active component was p-coumaric acid, a dominant phenolic acid in propolis and balsam poplar bud extracts. The study reported phenolic contents of 76.63 CAE mg/g for propolis and 83.25 CAE mg/g for balsam poplar bud aqueous extracts, with balsam poplar bud extracts showing higher SPF values (14.0) compared to propolis (12.7), while p-coumaric acid solution exhibited the highest SPF values (25.5). All eye drops were transparent, with pH values meeting the requirements for ocular drops. Formulations containing 8-10% poloxamer 407 met the criteria for in situ gels. All formulations remained stable for 90 days. Conclusion: The study results indicate that the formulated gels possess suitable physicochemical properties, are resistant to applied autoclaving conditions, and exhibit an extended release of active compounds with an increase in poloxamer content.

19.
Antibiotics (Basel) ; 13(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534665

RESUMO

Although the plants of the genus Euphorbia are largely exploited by therapists in Morocco, the composition and antibacterial activities of propolis from these plants are still unknown. To address this gap, this study aimed to characterize the pollen type, the volatile compounds, and the phenolic and mineral profiles of three Euphorbia propolis samples collected in Morocco and evaluate their antimicrobial activities. The minimum inhibitory concentration of the propolis samples was determined by the microdilution method, and the anti-adherence activity was evaluated by the crystal violet assay. The examination of anti-quorum-sensing proprieties was performed using the biosensor Chromobacterium violaceum CV026. Pollen analysis revealed that Euphorbia resinifera pollen dominated in the P1 sample (58%), while E. officinarum pollen dominated in the P2 and P3 samples (44%). The volatile compounds were primarily composed of monoterpene hydrocarbons, constituting 35% in P1 and 31% in P2, with α-pinene being the major component in both cases, at 16% in P1 and 15% in P2. Calcium (Ca) was the predominant mineral element in both E. resinifera (P1) and E. officinarum (P2 and P3) propolis samples. Higher levels of phenols, flavonoids and dihydroflavonoids were detected in the E. officinarum P2 sample. The minimum inhibitory concentration (MIC) value ranged from 50 to 450 µL/mL against Gram-positive and Gram-negative bacteria. Euphorbia propolis displayed the ability to inhibit quorum sensing in the biosensor C. violaceum CV026 and disrupted bacterial biofilm formation, including that of resistant bacterial pathogens. In summary, the current study evidences the potential use of E. officinarum propolis (P2 and P3) to combat important features of resistant pathogenic bacteria, such as quorum sensing and biofilm formation.

20.
Curr Issues Mol Biol ; 46(3): 1955-1974, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534744

RESUMO

The purpose of this study was to reveal the combined effects of propolis (P) and quercetin (Q) against diabetic peripheral neuropathy developing with streptozotocin-induced diabetes in rats. Sixty-four adult male rats were divided into eight equal groups: control, P (100 mg/kg/day), Q (100 mg/kg/day), P + Q (100 mg/day for both), diabetes mellitus (DM) (single-dose 60 mg/kg streptozotocin), DM + P, DM + Q, and DM + P + Q. The rats were sacrificed, and blood and sciatic nerve tissues were collected. Blood glucose and malondialdehyde (MDA) levels increased, while IL-6 and total antioxidant status decreased in the DM group (p = 0.016 and p = 0.047, respectively). Ultrastructural findings showed degeneration of the axon and myelin sheath. The apoptotic index (AI %), TNF-α, and IL-1ß immunopositivity increased significantly in the DM group (p < 0.001). Morphological structures approaching those of the controls were observed in the DM + P, DM + Q, and DM + P + Q groups. Morphometric measurements increased markedly in all treatment groups (p < 0.001), while blood glucose and MDA levels, AI (%), TNF-α, and IL-1ß immunopositivity decreased. In conclusion, the combined effects of propolis and quercetin in diabetic neuropathy may provide optimal morphological protection with neuroprotective effects by reducing hyperglycemia, and these may represent a key alternative supplement in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...